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Before reading...

In this article, I want to familiarize you with mixed causal-noncausal autoregressive models: a

topic that I have extensively studied in my PhD thesis and have continued to do - together with

Sébastien Fries - here at the VU. The first section provides some intuition on how such models

emerged from theory. For applied econometricians, the second section discusses some empirical

applications and future research ideas for these models.

1 Some background

Consider the following difference equation:

yt = a1yt−1 + εt, (1)

where (εt) is a sequence of white noise. You might be tempted to claim that this is an autore-

gressive (AR) process of order 1, but we have to be careful. In standard econometrics courses

and books, you study this model mostly under the assumption of model stability: i.e. |a1| < 1.

In combination with (εt) being white noise, this ensures stationarity of the AR(1). Applying

some limiting results and repeated substitution to (1), it can be shown that the convergent so-

lution to this difference equation is the moving average (MA) representation yt =
∑∞

j=0 a
j
1εt−j .

It shows that yt only depends on current and past values of the sequence (εt). You probably

also studied the case where a1 = 1, i.e. the unit root case. It is well-known that there is no
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stationary solution to this problem. However, what happens when |a1| > 1? In that case, (1)

is often indicated as an “explosive process”, but note that it also has a convergent solution.

Increase each time subscript by one and rewrite (1) as

yt =
1

a1
yt+1 −

1

a1
εt+1. (2)

Using similar arguments as before, the convergent solution is given by yt = −
∑∞

j=1 a
−j
1 εt+j , i.e.

yt depends solely on future values of (εt).

1.1 Why were such solutions barely studied?

A quote (adjusted to our notation) in Brockwell and Davis (1991) clarifies: “The stationary

solution is frequently regarded as unnatural since yt is correlated with {εs, s > t}. [...] It should

be noted that every AR(1) process with |a1| > 1 can be reexpressed as an AR(1) process with

|a1| < 1 and a new white noise sequence. From a second-order point of view therefore,

nothing is lost by eliminating AR(1) processes with |a1| > 1 from consideration.”

1.2 Why should we study them anyways?

The bold-faced part in the last sentence reveals why one might be interested in studying -

as they are called - noncausal processes. The two processes discussed above indeed have the

same autocovariance function (and thus, spectral density) as this is a symmetric measure. This

means that based on second moments they are identical. However, only the Normal distribution

is fully characterized by second-order properties. Hence, if we assume any other distribution

for the sequence (εt), there is information hidden in either lower or higher moments than the

second, which makes the probabilistic structure of the two processes different from each other!

In the next section, we discuss how this is useful, but let us first generalize the idea.
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1.3 Generalization

Our starting point was an AR(1), but note that we can generalize our claim by considering an

AR(p) process:

a(L)yt = εt, (3)

where a(L) = 1− a1L− ...− apLp and L is a lag operator such that Liyt = yt−i. Suppose that

this process has r well-behaved roots for stationarity, (i.e. they lie outside the unit circle) an s

ill-behaved roots (they lie inside the unit circle). Then we can rewrite a(L) = φ(L)ϕ∗(L), where

the first polynomial contains the r “good” roots and ϕ∗(L) the s “bad” roots. In order to solve

the issue of the “bad” roots, we apply a procedure similar to (2). Lanne and Saikkonen (2011)

apply this idea in their article and rewrite (3) as

φ(L)ϕ(L−1)yt = εt, (4)

with (εt) a new white noise sequence and φ(L) = 1−φ1L− ...−φrLr and ϕ(L−1) = 1−ϕ1L
−1−

... − ϕsL
−s. Note that L−1 is a lead operator such that L−iyt = yt+i. Finally, (4) is known as

the mixed causal-noncausal autoregressive (MAR) model. But enough algebra for now, what

can we actually do with these models?

2 Applications

The popularity of the MAR model has received a lot of attention in the last decade. This can

mostly be explained by three reasons. Firstly, it has been shown that MAR models can generate

processes exhibiting nonlinear features such as speculative bubbles and asymmetric cycles (see

e.g., Gouriéroux and Zaköıan, 2017 or Fries and Zaköıan, 2019). Secondly, the MAR can be

seen as “nonfundamental”1 solutions of rational expectations models (see e.g. Lanne and Luoto,

1A situation in which the econometrician has less information to his/her disposal than the economic agents.
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2013 for an application to the Hybrid New Keynesian Phillips Curve). Thirdly, MAR models

may have forecasting advantages over the conventional AR model (Lanne et al., 2012). Let us

focus on the first reason in this research article.

2.1 Bubbles

We start by considering the simplest two models within the class of MAR models, the purely

causal and noncausal AR(1):

yt = φ1yt−1 + εt ⇒ yt =

∞∑
j=0

φj1εt−j (5)

yt = ϕ1yt+1 + εt ⇒ yt =

∞∑
j=0

ϕj
1εt+j (6)

The two models and their corresponding MA representations look very similar, but there is an

important difference. Suppose that there is a very large shock εt at t = 10. In (5), we will be

surprised by the shock at t = 20, as yt is only determined by the current and past errors. This

is completely different from (6). Since yt depends on its future errors, we are closely building

towards the big shock. In other words, this process is anticipative. Figure 1(a)-(b) visualizes

this by idea by simulating causal and noncausal AR(1) processes where (εt) follows a Cauchy

distribution. Figure 1(c)-(d) shows examples of the MAR model, which combines a causal and

noncausal part. You can observe that there is no sudden increase or crash: the noncausal

component builds up the bubble, the causal part ensures the exponential decay after we reached

the highest (or as in panel (d) - lowest) point. The rate at which this happens depends on the

values of the coefficients. Note that the choice of a fat-tailed distribution, such as the Cauchy

in this simulation, is necessary to draw a “large value” that drives the bubble. In case we had

drawn the shocks (εt) from a Normal distribution, there would hardly be any difference between

the four processes. Empirical implementations of MAR models on bubbles can be found in e.g.
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Hencic and Gouriéroux (2015) for Bitcoin/USD exchange rates, Hecq et al. (2016) for Belgian

solar panels and Fries and Zaköıan (2019) for financial price series. In case you are interested

in playing around a bit with these models, we developed an R package “MARX” which makes

it possible to simulate, estimate and forecast with MAR models (Hecq et al., 2017).

2.2 Challenges

This research article is an attempt to comprehensively explain the concept of MAR models and

their main advantages for modelling economic and financial processes. However, there is still

quite some room for research:

• Purely causal and noncausal models are typically nested, i.e. an AR(1) can be seen

as a restricted version of an AR(2). This is not the case for MAR models in (4) as

the multiplication of polynomials makes the model nonlinear in the parameters. This

complicates model selection procedures.

• To estimate MAR models, the method of non-Gaussian maximum likelihood is typically

employed. This implies that a distributional assumption is necessary to perform estima-

tion. Are there other methods that are less stringent?

• In the multivariate case, things rapidly become more complicated. The MAR in (4) now

has polynomial matrices which are generally not commutative (i.e. AB 6= BA). What

are the implications of this? Can the models be used to evaluate policy measures (e.g.

by impulse-response analysis)? Is it sensible to look into structural multivariate MAR

models? Can we introduce a mixed-frequency component? And more....

3 A brief conclusion

The MAR model resulted in a new stream of literature in the field of economics and finance

over the last years. In case this topic piqued your interest, you can find some references below.
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(a) Simulated causal MAR(1,0) process (φ1 = 0.9)
with standard Cauchy errors
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(b) Simulated noncausal MAR(0,1) process (ϕ1 =
0.9) with standard Cauchy errors
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(c) Simulated MAR(2,2) process (φ = [0.2, 0.3]′,ϕ =
[0.2, 0.1]′) with standard Cauchy errors
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(d) Simulated MAR(2,2) process (φ = [0.3, 0.3]′,ϕ =
[0.4, 0.4]′) with standard Cauchy errors

Figure 1: Simulated processes from various MAR(r, s) specifications, T = 100
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